

Beautiful Testing

Edited by Tim Riley and Adam Goucher

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Beautiful Testing
Edited by Tim Riley and Adam Goucher

Copyright © 2010 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also

available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/

institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Sarah Schneider
Copyeditor: Genevieve d’Entremont
Proofreader: Sarah Schneider

Indexer: John Bickelhaupt
Cover Designer: Mark Paglietti
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
October 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Beautiful Testing, the image of

a beetle, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-15981-8

[V]

1255122093

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

All royalties from this book will be donated to the
UN Foundation’s Nothing But Nets campaign to
save lives by preventing malaria, a disease that
kills millions of children in Africa each year.

C O N T E N T S

PREFACE xiii
by Adam Goucher

Part One BEAUTIFUL TESTERS

1 WAS IT GOOD FOR YOU? 3
by Linda Wilkinson

2 BEAUTIFUL TESTING SATISFIES STAKEHOLDERS 15
by Rex Black

For Whom Do We Test? 16
What Satisfies? 18
What Beauty Is External? 20
What Beauty Is Internal? 23
Conclusions 25

3 BUILDING OPEN SOURCE QA COMMUNITIES 27
by Martin Schröder and Clint Talbert

Communication 27
Volunteers 28
Coordination 29
Events 32
Conclusions 35

4 COLLABORATION IS THE CORNERSTONE OF BEAUTIFUL PERFORMANCE TESTING 37
by Scott Barber

Setting the Stage 38
100%?!? Fail 38
The Memory Leak That Wasn’t 45
Can’t Handle the Load? Change the UI 46
It Can’t Be the Network 48
Wrap-Up 51

Part Two BEAUTIFUL PROCESS

5 JUST PEACHY: MAKING OFFICE SOFTWARE MORE RELIABLE WITH FUZZ TESTING 55
by Kamran Khan

User Expectations 55
What Is Fuzzing? 57
Why Fuzz Test? 57

vii

Fuzz Testing 60
Future Considerations 65

6 BUG MANAGEMENT AND TEST CASE EFFECTIVENESS 67
by Emily Chen and Brian Nitz

Bug Management 68
The First Step in Managing a Defect Is Defining It 70
Test Case Effectiveness 77
Case Study of the OpenSolaris Desktop Team 79
Conclusions 83
Acknowledgments 83
References 84

7 BEAUTIFUL XMPP TESTING 85
by Remko Tronçon

Introduction 85
XMPP 101 86
Testing XMPP Protocols 88
Unit Testing Simple Request-Response Protocols 89
Unit Testing Multistage Protocols 94
Testing Session Initialization 97
Automated Interoperability Testing 99
Diamond in the Rough: Testing XML Validity 101
Conclusions 101
References 102

8 BEAUTIFUL LARGE-SCALE TEST AUTOMATION 103
by Alan Page

Before We Start 104
What Is Large-Scale Test Automation? 104
The First Steps 106
Automated Tests and Test Case Management 107
The Automated Test Lab 111
Test Distribution 112
Failure Analysis 114
Reporting 114
Putting It All Together 116

9 BEAUTIFUL IS BETTER THAN UGLY 119
by Neal Norwitz, Michelle Levesque, and Jeffrey Yasskin

The Value of Stability 120
Ensuring Correctness 121
Conclusions 127

10 TESTING A RANDOM NUMBER GENERATOR 129
by John D. Cook

What Makes Random Number Generators Subtle to Test? 130
Uniform Random Number Generators 131

viii C O N T E N T S

Nonuniform Random Number Generators 132
A Progression of Tests 134
Conclusions 141

11 CHANGE-CENTRIC TESTING 143
by Murali Nandigama

How to Set Up the Document-Driven, Change-Centric Testing Framework? 145
Change-Centric Testing for Complex Code Development Models 146
What Have We Learned So Far? 152
Conclusions 154

12 SOFTWARE IN USE 155
by Karen N. Johnson

A Connection to My Work 156
From the Inside 157
Adding Different Perspectives 159
Exploratory, Ad-Hoc, and Scripted Testing 161
Multiuser Testing 163
The Science Lab 165
Simulating Real Use 166
Testing in the Regulated World 168
At the End 169

13 SOFTWARE DEVELOPMENT IS A CREATIVE PROCESS 171
by Chris McMahon

Agile Development As Performance 172
Practice, Rehearse, Perform 173
Evaluating the Ineffable 174
Two Critical Tools 174
Software Testing Movements 176
The Beauty of Agile Testing 177
QA Is Not Evil 178
Beauty Is the Nature of This Work 179
References 179

14 TEST-DRIVEN DEVELOPMENT: DRIVING NEW STANDARDS OF BEAUTY 181
by Jennitta Andrea

Beauty As Proportion and Balance 181
Agile: A New Proportion and Balance 182
Test-Driven Development 182
Examples Versus Tests 184
Readable Examples 185
Permanent Requirement Artifacts 186
Testable Designs 187
Tool Support 189
Team Collaboration 192
Experience the Beauty of TDD 193
References 194

C O N T E N T S ix

15 BEAUTIFUL TESTING AS THE CORNERSTONE OF BUSINESS SUCCESS 195
by Lisa Crispin

The Whole-Team Approach 197
Automating Tests 199
Driving Development with Tests 202
Delivering Value 206
A Success Story 208
Post Script 208

16 PEELING THE GLASS ONION AT SOCIALTEXT 209
by Matthew Heusser

It’s Not Business…It’s Personal 209
Tester Remains On-Stage; Enter Beauty, Stage Right 210
Come Walk with Me, The Best Is Yet to Be 213
Automated Testing Isn’t 214
Into Socialtext 215
A Balanced Breakfast Approach 227
Regression and Process Improvement 231
The Last Pieces of the Puzzle 231
Acknowledgments 233

17 BEAUTIFUL TESTING IS EFFICIENT TESTING 235
by Adam Goucher

SLIME 235
Scripting 239
Discovering Developer Notes 240
Oracles and Test Data Generation 241
Mindmaps 242
Efficiency Achieved 244

Part Three BEAUTIFUL TOOLS

18 SEEDING BUGS TO FIND BUGS: BEAUTIFUL MUTATION TESTING 247
by Andreas Zeller and David Schuler

Assessing Test Suite Quality 247
Watching the Watchmen 249
An AspectJ Example 252
Equivalent Mutants 253
Focusing on Impact 254
The Javalanche Framework 255
Odds and Ends 255
Acknowledgments 256
References 256

19 REFERENCE TESTING AS BEAUTIFUL TESTING 257
by Clint Talbert

Reference Test Structure 258

x C O N T E N T S

Reference Test Extensibility 261
Building Community 266

20 CLAM ANTI-VIRUS: TESTING OPEN SOURCE WITH OPEN TOOLS 269
by Tomasz Kojm

The Clam Anti-Virus Project 270
Testing Methods 270
Summary 283
Credits 283

21 WEB APPLICATION TESTING WITH WINDMILL 285
by Adam Christian

Introduction 285
Overview 286
Writing Tests 286
The Project 292
Comparison 293
Conclusions 293
References 294

22 TESTING ONE MILLION WEB PAGES 295
by Tim Riley

In the Beginning… 296
The Tools Merge and Evolve 297
The Nitty-Gritty 299
Summary 301
Acknowledgments 301

23 TESTING NETWORK SERVICES IN MULTIMACHINE SCENARIOS 303
by Isaac Clerencia

The Need for an Advanced Testing Tool in eBox 303
Development of ANSTE to Improve the eBox QA Process 304
How eBox Uses ANSTE 307
How Other Projects Can Benefit from ANSTE 315

A CONTRIBUTORS 317

INDEX 323

C O N T E N T S xi

Preface

I DON’T THINK BEAUTIFUL TESTING COULD HAVE BEEN PROPOSED , much less published, when

I started my career a decade ago. Testing departments were unglamorous places, only slightly

higher on the corporate hierarchy than front-line support, and filled with unhappy drones

doing rote executions of canned tests.

There were glimmers of beauty out there, though.

Once you start seeing the glimmers, you can’t help but seek out more of them. Follow the trail

long enough and you will find yourself doing testing that is:

• Fun

• Challenging

• Engaging

• Experiential

• Thoughtful

• Valuable

Or, put another way, beautiful.

Testing as a recognized practice has, I think, become a lot more beautiful as well. This is partly

due to the influence of ideas such as test-driven development (TDD), agile, and craftsmanship,

but also the types of applications being developed now. As the products we develop and the

xiii

ways in which we develop them become more social and less robotic, there is a realization that

testing them doesn’t have to be robotic, or ugly.

Of course, beauty is in the eye of the beholder. So how did we choose content for Beautiful

Testing if everyone has a different idea of beauty?

Early on we decided that we didn’t want to create just another book of dry case studies. We

wanted the chapters to provide a peek into the contributors’ views of beauty and testing.

Beautiful Testing is a collection of chapter-length essays by over 20 people: some testers, some

developers, some who do both. Each contributor understands and approaches the idea of

beautiful testing differently, as their ideas are evolving based on the inputs of their previous

and current environments.

Each contributor also waived any royalties for their work. Instead, all profits from Beautiful

Testing will be donated to the UN Foundation’s Nothing But Nets campaign. For every $10 in

donations, a mosquito net is purchased to protect people in Africa against the scourge of

malaria. Helping to prevent the almost one million deaths attributed to the disease, the large

majority of whom are children under 5, is in itself a Beautiful Act. Tim and I are both very

grateful for the time and effort everyone put into their chapters in order to make this happen.

How This Book Is Organized
While waiting for chapters to trickle in, we were afraid we would end up with different versions

of “this is how you test” or “keep the bar green.” Much to our relief, we ended up with a diverse

mixture. Manifestos, detailed case studies, touching experience reports, and war stories from

the trenches—Beautiful Testing has a bit of each.

The chapters themselves almost seemed to organize themselves naturally into sections.

Part I, Beautiful Testers

Testing is an inherently human activity; someone needs to think of the test cases to be

automated, and even those tests can’t think, feel, or get frustrated. Beautiful Testing therefore

starts with the human aspects of testing, whether it is the testers themselves or the interactions

of testers with the wider world.

Chapter 1, Was It Good for You?

Linda Wilkinson brings her unique perspective on the tester’s psyche.

Chapter 2, Beautiful Testing Satisfies Stakeholders

Rex Black has been satisfying stakeholders for 25 years. He explains how that is beautiful.

Chapter 3, Building Open Source QA Communities

Open source projects live and die by their supporting communities. Clint Talbert and

Martin Schröder share their experiences building a beautiful community of testers.

xiv P R E F A C E

Chapter 4, Collaboration Is the Cornerstone of Beautiful Performance Testing

Think performance testing is all about measuring speed? Scott Barber explains why, above

everything else, beautiful performance testing needs to be collaborative.

Part II, Beautiful Process

We then progress to the largest section, which is about the testing process. Chapters here give

a peek at what the test group is doing and, more importantly, why.

Chapter 5, Just Peachy: Making Office Software More Reliable with Fuzz Testing

To Kamran Khan, beauty in office suites is in hiding the complexity. Fuzzing is a test

technique that follows that same pattern.

Chapter 6, Bug Management and Test Case Effectiveness

Brian Nitz and Emily Chen believe that how you track your test cases and bugs can be

beautiful. They use their experience with OpenSolaris to illustrate this.

Chapter 7, Beautiful XMPP Testing

Remko Tronçon is deeply involved in the XMPP community. In this chapter, he explains

how the XMPP protocols are tested and describes their evolution from ugly to beautiful.

Chapter 8, Beautiful Large-Scale Test Automation

Working at Microsoft, Alan Page knows a thing or two about large-scale test automation.

He shares some of his secrets to making it beautiful.

Chapter 9, Beautiful Is Better Than Ugly

Beauty has always been central to the development of Python. Neal Noritz, Michelle

Levesque, and Jeffrey Yasskin point out that one aspect of beauty for a programming

language is stability, and that achieving it requires some beautiful testing.

Chapter 10, Testing a Random Number Generator

John D. Cook is a mathematician and applies a classic definition of beauty, one based on

complexity and unity, to testing random number generators.

Chapter 11, Change-Centric Testing

Testing code that has not changed is neither efficient nor beautiful, says Murali

Nandigama; however, change-centric testing is.

Chapter 12, Software in Use

Karen N. Johnson shares how she tested a piece of medical software that has had a direct

impact on her nonwork life.

Chapter 13, Software Development Is a Creative Process

Chris McMahon was a professional musician before coming to testing. It is not surprising,

then, that he thinks beautiful testing has more to do with jazz bands than manufacturing

organizations.

Chapter 14, Test-Driven Development: Driving New Standards of Beauty

Jennitta Andrea shows how TDD can act as a catalyst for beauty in software projects.

P R E F A C E xv

Chapter 15, Beautiful Testing As the Cornerstone of Business Success

Lisa Crispin discusses how a team’s commitment to testing is beautiful, and how that can

be a key driver of business success.

Chapter 16, Peeling the Glass Onion at Socialtext

Matthew Heusser has worked at a number of different companies in his career, but in this

chapter we see why he thinks his current employer’s process is not just good, but beautiful.

Chapter 17, Beautiful Testing Is Efficient Testing

Beautiful testing has minimal retesting effort, says Adam Goucher. He shares three

techniques for how to reduce it.

Part III, Beautiful Tools

Beautiful Testing concludes with a final section on the tools that help testers do their jobs more

effectively.

Chapter 18, Seeding Bugs to Find Bugs: Beautiful Mutation Testing

Trust is a facet of beauty. The implication is that if you can’t trust your test suite, then

your testing can’t be beautiful. Andreas Zeller and David Schuler explain how you can

seed artificial bugs into your product to gain trust in your testing.

Chapter 19, Reference Testing As Beautiful Testing

Clint Talbert shows how Mozilla is rethinking its automated regression suite as a tool for

anticipatory and forward-looking testing rather than just regression.

Chapter 20, Clam Anti-Virus: Testing Open Source with Open Tools

Tomasz Kojm discusses how the ClamAV team chooses and uses different testing tools,

and how the embodiment of the KISS principle is beautiful when it comes to testing.

Chapter 21, Web Application Testing with Windmill

Adam Christian gives readers an introduction to the Windmill project and explains how

even though individual aspects of web automation are not beautiful, their combination is.

Chapter 22, Testing One Million Web Pages

Tim Riley sees beauty in the evolution and growth of a test tool that started as something

simple and is now anything but.

Chapter 23, Testing Network Services in Multimachine Scenarios

When trying for 100% test automation, the involvement of multiple machines for a single

scenario can add complexity and non-beauty. Isaac Clerencia showcases ANSTE and

explains how it can increase beauty in this type of testing.

Beautiful Testers following a Beautiful Process, assisted by Beautiful Tools, makes for Beautiful

Testing. Or at least we think so. We hope you do as well.

xvi P R E F A C E

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book

in your programs and documentation. You do not need to contact us for permission unless

you’re reproducing a significant portion of the code. For example, writing a program that uses

several chunks of code from this book does not require permission. Selling or distributing a

CD-ROM of examples from O’Reilly books does require permission. Answering a question by

citing this book and quoting example code does not require permission. Incorporating a

significant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,

publisher, and ISBN. For example: “Beautiful Testing, edited by Tim Riley and Adam Goucher.

Copyright 2010 O’Reilly Media, Inc., 978-0-596-15981-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search
over 7,500 technology and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read

books on your cell phone and mobile devices. Access new titles before they are available for

print, and get exclusive access to manuscripts in development and post feedback for the

authors. Copy and paste code samples, organize your favorites, download chapters, bookmark

key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital

access to this book and others on similar topics from O’Reilly and other publishers, sign up for

free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

P R E F A C E xvii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://oreilly.com/catalog/9780596159818

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://oreilly.com

Acknowledgments
We would like to thank the following people for helping make Beautiful Testing happen:

• Dr. Greg Wilson. If he had not written Beautiful Code, we would never have had the idea

nor a publisher for Beautiful Testing.

• All the contributors who spent many hours writing, rewriting, and sometimes rewriting

again their chapters, knowing that they will get nothing in return but the satisfaction of

helping prevent the spread of malaria.

• Our technical reviewers: Kent Beck, Michael Feathers, Paul Carvalho, and Gary Pollice.

Giving useful feedback is sometimes as hard as receiving it, but what we got from them

certainly made this book more beautiful.

• And, of course, our wives and children, who put up with us doing “book stuff” over the

last year.

—Adam Goucher

xviii P R E F A C E

http://oreilly.com/catalog/9780596159818
mailto:bookquestions@oreilly.com
http://oreilly.com
http://oreilly.com/catalog/9780596510046

C H A P T E R S E V E N

Beautiful XMPP Testing

Remko Tronçon

AT MY FIRST JOB INTERVIEW , ONE OF THE INTERVIEWERS ASKED ME if I knew what “unit testing”

was and whether I had used it before. Although I had been developing an XMPP-based instant

messaging (IM) client for years, I had to admit that I only vaguely knew what unit testing was,

and that I hardly did any automated testing at all. I had a perfectly good reason, though: since

XMPP clients are all about XML data, networks, and user interaction, they don’t lend

themselves well to any form of automated testing. A few months after the interview, the

experience of working in an agile environment made me realize how weak that excuse was.

It took only a couple of months more to discover how beautiful tests could be, especially in

environments such as XMPP, where you would least expect them to be.

Introduction
The eXtensible Messaging and Presence Protocol (XMPP) is an open, XML-based networking

protocol for real-time communication. Only a decade after starting out as an instant messaging

solution under the name Jabber, XMPP is today being applied in a broad variety of applications,

much beyond instant messaging. These applications include social networking, multimedia

interaction (such as voice and video), micro-blogging, gaming, and much more.

In this chapter, I will try to share my enthusiasm about testing in the XMPP world, and more

specifically in the Swift IM client. Swift is only one of the many XMPP implementations out

there, and may not be the only one that applies the testing methods described here. However,

it might be the client that takes the most pride in beautiful tests.

85

http://swift.im

So, what do I consider to be “beautiful testing”? As you’ve probably discovered by now,

opinions on the subject vary greatly. My point of view, being a software developer, is that

beauty in tests is about the code behind the tests. Naturally, beautiful tests look good

aesthetically, so layout plays a role. However, we all know that true beauty is actually found

within. Beauty in tests is about simplicity; it’s about being able to understand what a test (and

the system being tested) does with a mere glance at the code, even with little or no prior

knowledge about the class or component they test; it’s about robustness, and not having to fix

dozens of tests on every change; it’s about having fun both reading and writing the tests.

As you might expect, there is a lot of code in the text that follows. And since I’m taking

inspiration from Swift, which is written in C++, the examples in this chapter were written in

C++ as well. Using a language like Ruby or Python probably would have made the tests look

more attractive, but I stand by my point that true beauty in tests goes deeper than looks.

XMPP 101
Before diving into the details of XMPP implementation testing, let’s first have a quick crash

course about how XMPP works.

The XMPP network consists of a series of interconnected servers with clients connecting to

them, as shown in Figure 7-1. The job of XMPP is to route small “packets” of XML between

these entities on the network. For example, Alice, who is connected to the wonderland.lit

server, may want to send a message to her sister, who is connected to the realworld.lit server.

To do that, she puts her message into a small snippet of XML:

<message from="alice@wonderland.lit/RabbitHole"
 to="sister@realworld.lit">
 <body>Hi there</body>
</message>

She then delivers this message to her server, which forwards it to the realworld.lit server,

which in turn delivers it to her sister’s client.

Every entity on the XMPP network is addressed using a Jabber ID (JID). A JID has the form

username@domain/resource, where domain is the domain name of the XMPP server and username

identifies an account on that server. One user can be connected to the server with multiple

instances of a client; the resource part of the JID gives a unique name to every connected

instance. In some cases, the resource part can be left out, which means the server can route

the message to whichever connected instance it deems best.

The small packets of XML that are routed through the network are called stanzas, and fall into

three categories: message stanzas, presence stanzas, and info/query stanzas. Each type of stanza is

routed differently by servers, and handled differently by clients.

86 C H A P T E R S E V E N

Message stanzas

Provide a basic mechanism to get information from one entity to another. As the name

implies, message stanzas are typically used to send (text) messages to each other.

Presence stanzas

“Broadcast” information from one entity to many entities on the network. For example,

Alice may want to notify all of her friends that she is currently not available for

communication, so she sends out the following presence stanza:

<presence from="alice@wonderland.lit/Home">
 <show>away</show>
 <status>Down the rabbit hole!</status>
</presence>

Her server then forwards this stanza to each of her contacts, informing them of Alice’s

unavailability.

Info/query (IQ) stanzas

Provide a mechanism for request/response interactions between entities, typically used to

query or change information on a given entity. For example, Alice could be interested in

knowing what client version her sister is using. She therefore sends the following stanza

to her sister:

<iq type="get" id="aad8a"
 from="alice@wonderland.lit/RabbitHole" to="sister@realworld.lit/Home">
 <query xmlns="jabber:iq:version"/>
</iq>

FIGURE 7-1. The decentralized architecture of the XMPP Network; clients connect to servers from different domains, which in

turn connect to each other

B E A U T I F U L X M P P T E S T I N G 87

The unique identifier of the stanza is used to match an incoming IQ result to the original

IQ request.

An empty child element (or payload) in a specific namespace indicates what type of

information is requested (in this case, software version information).

Upon receiving this request, her sister’s client immediately responds with the name and

version of her client software:

<iq type="result" id="aad8a"
 from="sister@realworld.lit/Home" to="alice@wonderland.lit/RabbitHole">
 <query xmlns="jabber:iq:version">
 <name>Swift</name>
 <version>1.0</version>
 </query>
</iq>

The id attribute of the response matches the one from the request.

The response’s payload contains the result of the query.

Stanzas carry information in their payloads, which are added as child elements of the stanza.

For example, a message can have a body payload containing the body text of the message.

Different types of payloads are handled differently. By using XML namespaces for payloads,

the XMPP protocol can easily be extended to support a virtually unlimited amount of

information types, without having to worry about conflicting payload element names. For

example, many of the early XMPP protocol extensions (including the software version protocol

used in the examples) use the query payload. By using namespaces such as jabber:iq:version,

entities know which type of protocol they are dealing with when they receive a query payload,

and they know how to interpret the payload.

This section only scratched the surface of XMPP, just enough to get you through the rest of

this chapter. If you want to learn more about how XMPP works and what you can do with it,

have a look at [XMPP TDG] (see “References” on page 102), or visit http://xmpp.org.

Testing XMPP Protocols
One of the important aspects of an XMPP application, be it client or server, is the actual

implementation of the XMPP protocols. Every XMPP implementation needs to at least

implement the XMPP core protocols, as standardized by the IETF in [RFC 3920] and [RFC

3921]. These protocols provide the basic building blocks for XMPP, describing how an XMPP

connection is set up, and what you can send over it. On top of the core protocols, the XMPP

Standards Foundation created an ever-growing list of XMPP Extension Protocols (XEPs). These

specifications describe how to extend the core protocol for very specific features, ranging from

simple things such as requesting the software version of another client (standardized in

[XEP-0092]), up to complex protocols for negotiating audio/video conference calls between

clients, transferring files, and so on.

88 C H A P T E R S E V E N

http://xmpp.org

This text focuses on testing the functionality of XMPP protocol implementations, answering

questions such as, “Does my client correctly respond to incoming requests?”, “Does my client

send the right requests at the right time?”, “Can my client handle this specific response on this

request?”, and so on. We start out by looking at the most simple request-response protocols,

after which we gradually move up the ladder to more complex protocols. While the complexity

of the protocols increases, the level at which the tests are written becomes higher as well,

moving from very specific unit tests up to full system tests. Although testing is mainly described

from the perspective of a client developer, most of the approaches used here apply to server

testing as well.

Unit Testing Simple Request-Response Protocols
Many of the XMPP protocols are simple: one side sends an IQ request, the other side receives

the request, processes it, and responds with an IQ result. An example of such a simple request-

response protocol is the software version protocol illustrated earlier. An implementation of this

protocol consists of two parts:

• The initiator implementation sends a software version request and processes the

corresponding response when it comes in.

• The responder listens for incoming software version requests and responds to them.

These implementations are typically implemented locally in one class for the initiator and one

for the responder.* Example 7-1 shows how a VersionResponder class is instantiated in a client

to respond to incoming software version requests. All this class does is listen for an incoming

IQ query of the type jabber:iq:version, and respond with the values set through setVersion.

The class uses the central XMPPClient class to send data to and receive data from the XMPP

connection.

EXAMPLE 7-1. Using VersionResponder to listen and respond to software version requests

class MyClient {
 MyClient() {
 xmppClient = new XMPPClient("alice@wonderland.lit", "mypass");
 versionResponder = new VersionResponder(xmppClient);
 versionResponder->setVersion("Swift", "0.1");
 xmppClient->connect();
 }
 …
};

Since the implementation of request-response protocols is local to one class, unit testing is a

good way to test the functionality of the protocol implementation. So, let’s see how we can

unit test the VersionResponder class.

* Some implementations are even known to put both responder and initiator implementations in one class.
Don’t try this at home, kids!

B E A U T I F U L X M P P T E S T I N G 89

First, we need to make sure we can create an isolated instance of Responder. The only

dependency this class has is the XMPPClient, a class that sets up and manages the XMPP

connection. Setting up and managing a connection involves quite some work, and in turn

brings in other dependencies, such as network interaction, authentication, encryption

mechanisms, and so on. Luckily, all VersionResponder needs to be able to do is send and receive

data from a data stream. It therefore only needs to depend on a DataChannel interface, which

provides a method to send data and a signal to receive data, as shown in Example 7-2. This

interface, implemented by Client, can be easily mocked in our unit test.

EXAMPLE 7-2. Abstracting out data interaction in a DataChannel interface; the XMPPClient class is a concrete implementation

of this interface

class DataChannel {
 public:
 virtual void sendData(const string& data) = 0;
 boost::signal<void (const string&)> onDataReceived;
};

The signal onDataReceived has one string parameter (and no return value). When the signal

is emitted, the string argument containing the data received will be passed to the connected

slot method.

Now that we have all the ingredients for testing our VersionResponder, let’s have a first attempt

at writing a unit test. Example 7-3 shows how we can test the basic behavior of the responder,

using a mock data channel to generate and catch incoming and outgoing data, respectively.

EXAMPLE 7-3. Testing VersionResponder using raw serialized XML data

void VersionResponderTest::testHandleIncomingRequest() {
 // Set up the test fixture
 MockDataChannel dataChannel;
 VersionResponder responder(&dataChannel);
 responder.setVersion("Swift", "1.0");

 // Fake incoming request data on the data channel
 dataChannel.onDataReceived(
 "<iq type='get' from='alice@wonderland.lit/RabbitHole' id='version-1'>"
 "<query xmlns='jabber:iq:version'/>"
 "</iq>");

 // Verify the outcome
 ASSERT_EQUAL(
 "<iq type='result' to='alice@wonderland.lit/RabbitHole' id='version-1'>"
 "<query xmlns='jabber:iq:version'>"
 "<name>Swift</name>"
 "<version>1.0</version>"
 "</query>"
 "</iq>",
 dataChannel.sentData);
}

90 C H A P T E R S E V E N

On first sight, this unit test doesn’t look too bad: it’s relatively short, easy to understand,

structured according to the rules of unit testing style, and isolates testing of the protocol from

the low-level network aspects of XMPP. However, the beauty of this test is only skin-deep, as

the test turns out to be pretty fragile. To see this, we need to look at how XMPP implementations

generate the response to a request.

Whenever an XMPP client generates an XML stanza, it typically constructs the XML of the

stanza by building up a structured document (e.g., using a Document Object Model [DOM] API),

and then serializes this document into a textual XML representation, which is then sent over

the network. In Example 7-3, our test records exactly the serialized XML stanza generated by

the responder being tested, and then compares it to a piece of XML that it expects. The problem

with this approach is that the same XML element can be serialized in different correct ways.

For example, we could have switched the order of the from and type attributes of the <iq/>

element and still have a logically equivalent stanza. This means that the smallest change to the

way stanzas are serialized could break all tests.

One solution to avoid the fragility caused by XML serialization is to ensure that serialized

stanzas are always in Canonical XML form (see [XML-C14n]). By normalizing away

nonmeaningful properties such as attribute order and whitespace, this subset of XML ensures

that two equivalent XML stanzas can be compared in a stable way, thus solving the fragility of

our tests. Unfortunately, since XMPP implementations typically use off-the-shelf XML

implementations, they often have no control over how XML is serialized, and as such cannot

make use of this trick to compare stanzas.

The solution most XMPP implementations take to verify responses is to check the structured

DOM form of the response instead of comparing the serialized form. As shown in

Example 7-4, this means that our VersionResponder no longer uses an interface to send raw

data, but instead depends on a more structured XMLElementChannel interface to send and receive

stanzas as XML element data structures.

EXAMPLE 7-4. Testing VersionResponder using the structured XML representation; this test is no longer influenced by changes

in the way the XML stanzas are serialized for transferring (e.g., different attribute order, extra whitespace)

void VersionResponderTest::testHandleIncomingRequest() {
 // Set up the test fixture
 MockXMLElementChannel xmlElementChannel;
 VersionResponder responder(&xmlElementChannel);
 responder.setVersion("Swift", "1.0");

 // Fake incoming request stanza on the stanza channel
 xmlElementChannel.onXMLElementReceived(XMLElement::fromString(
 "<iq type='get' from='alice@wonderland.lit/RabbitHole' id='version-1'>"
 "<query xmlns='jabber:iq:version'/>"
 "</iq>"));

 // Verify the outcome
 ASSERT_EQUAL(1, xmlElementChannel.sentXMLElements.size());
 XMLElement response = xmlElementChannel.sentXMLElements[0];

B E A U T I F U L X M P P T E S T I N G 91

 ASSERT_EQUAL("iq", response.getTagName());
 ASSERT_EQUAL("result", response.getAttribute("type"));
 ASSERT_EQUAL("id", response.getAttribute("version-1"));
 ASSERT_EQUAL("alice@wonderland.lit/RabbitHole", response.getAttribute("to"));
 XMLElement queryElement = response.getElementByTagNameNS(
 "query", "jabber:iq:version");
 ASSERT(queryElement.isValid());
 XMLElement nameElement = queryElement.getElementByTagName("name");
 ASSERT(nameElement.isValid());
 ASSERT_EQUAL("Swift", nameElement.getText());
 XMLElement versionElement = queryElement.getElementByTagName("version");
 ASSERT(versionElement.isValid());
 ASSERT_EQUAL("1.0", versionElement.getText());
}

A downside of this test is that it is slightly less appealing than the one from Example 7-3. For

this one test, the fact that it has become less compact and readable is only a small price to pay.

However, suppose now that we also want to test the case where the user didn’t provide a

version to the version responder, in which case we want to send back “Unknown version” as

a version string. This test would in fact look exactly like Example 7-4, except that the call to

setVersion will pass an empty string instead of "1.0", and the test would compare the version

to "Unknown version". Needless to say, this is a lot of duplicated code just to test a small difference

in behavior, which will only get worse the more complex our protocol is (and hence the more

tests it needs).

A first part of the duplication lies in checking whether the responder sends an <iq/> stanza of

type result, whether it is addressed to the sender of the original stanza, and whether the

identifier matches that of the request. This part can be easily factored out into a “generic”

responder base class and tested separately.

A second problem with our test is the fact that we need to analyze the structure of the XML

to extract the values we want to test. The real underlying problem here is the fact that our tests

are testing two things at once: the logic of the protocol (i.e., what it should respond) and the

representation of the responses (i.e., how the request and response is represented in XML).

To separate the logic from the representation in our test, we adapt our VersionResponder to work

on a high-level IQ data structure, which in turn contains high-level Payload data structures

representing the payloads they carry. Using these abstract data structures, we can now focus

on testing the VersionResponder’s functionality, without worrying about how the IQ and

Payload data structures are actually represented in XML. The resulting test can be seen in

Example 7-5.

EXAMPLE 7-5. Testing the logic of VersionResponder; the actual (XML) representation of the stanzas sent and received by

VersionResponder are no longer explicitly present in this test, making the test resistant against changes in representation

void VersionResponderTest::testHandleIncomingRequest() {
 // Set up the test fixture
 MockIQChannel iqChannel;
 VersionResponder responder(&iqChannel);

92 C H A P T E R S E V E N

 responder.setVersion("Swift");

 // Fake incoming request stanza on the stanza channel
 iqChannel.onIQReceived(IQ(IQ::Get, new VersionPayload()));

 // Verify the outcome
 ASSERT_EQUAL(1, iqChannel.sentIQs.size());
 const VersionPayload* payload =
 iqChannel.sentIQs[0].getPayload<VersionPayload>();
 ASSERT(payload);
 ASSERT_EQUAL("Swift", payload->getName());
 ASSERT_EQUAL("Unknown version", payload->getVersion());
}

The conversion from the VersionPayload structure to XML can now be tested independently, as

illustrated in Example 7-6. Although this test still isn’t very attractive, the clutter coming from

the representational part no longer impacts the tests for the more important behavioral part

of the protocol.

EXAMPLE 7-6. Testing the conversion of VersionPayload to XML

void VersionPayloadSerializerTest::testSerialize() {
 // Set up the test fixture
 VersionPayloadSerializer serializer;
 VersionPayload payload;
 payload.setVersion("Swift", "1.0");

 // Serialize a payload
 XMLElement result = serializer.serialize(payload);

 // Verify the serialized element
 ASSERT_EQUAL("query", result.getTagName());
 ASSERT_EQUAL("jabber:iq:version", result.getNamespace());
 XMLElement* nameElement = queryElement->getElementsByTagName("name");
 ASSERT(nameElement);
 ASSERT_EQUAL("Swift", nameElement->getText());
 XMLElement* versionElement = queryElement->getElementsByTagName("version");
 ASSERT(versionElement);
 ASSERT_EQUAL("1.0", versionElement->getText());
}

In this section, we discussed how to test a simple IQ-based request/response protocol. In our

first attempt, we tested the protocol at the lowest level possible, by analyzing the actual data

sent over the wire. Subsequent versions tested the logic of the protocol at a higher, more

structured level, up to the point where the logic of the responder was tested independently of

the actual representation of the data sent over the network. Although it might seem overkill

to separate the XML parsing and serializing from the actual data structure for a simple protocol

like the one shown here, it makes testing the more complex (multistage) protocols from the

next sections a lot cleaner.

B E A U T I F U L X M P P T E S T I N G 93

Unit Testing Multistage Protocols
So far, the class of protocols we have considered was rather simple: one side sent out a request,

the other side responded, and we were done. Although many of the XMPP protocols fall within

this category, there are several others that consist of multiple iterations of these request-

response cycles. These protocols start by doing a request, and then take subsequent steps based

on the response of previous requests. Testing these types of protocols is the focus of this section.

Besides person-to-person conversations, XMPP also allows users to join chat “rooms” to

communicate with multiple people at once. Whenever a user wants to join such a multiuser

chat (MUC for short), an IM client needs to detect the MUC rooms that are available on a server

and present this list to the server. Obtaining this list requires a chain of multiple service

discovery (often called disco in the XMPP world) requests. For example, let’s assume Alice wants

to get a list of all the available rooms on the wonderland.lit server. She starts by requesting all

the available services of her server, which is done by sending a disco#items request to the server:

<iq type="get" id="muc-1" to="wonderland.lit">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

The server then responds with the list of all its services:

<iq type="result" id="muc-1"
 from="wonderland.lit" to="alice@wonderland.lit/RabbitHole">
 <query xmlns="http://jabber.org/protocol/disco#items">
 <item jid="pubsub.wonderland.lit"/>
 <item jid="rooms.wonderland.lit"/>
 </query>
</iq>

Alice now needs to determine which one of these services provides chat rooms. She therefore

sends a disco#info request to each service, asking them which protocols they support:

<iq type="get" id="muc-2" to="pubsub.wonderland.lit">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

<iq type="get" id="muc-3" to="rooms.wonderland.lit">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

The first service responds:

<iq type="result" id="muc-2"
 from="pubsub.wonderland.lit" to="alice@wonderland.lit/RabbitHole">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <feature var="http://jabber.org/protocol/pubsub"/>
 </query>
</iq>

94 C H A P T E R S E V E N

This service seems to support only the PubSub protocol (feature), which is not what Alice was

looking for. The second service, however, responds with the following feature list:

<iq type="result" id="muc-3"
 from="rooms.wonderland.lit" to="alice@wonderland.lit/RabbitHole">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <feature var="http://jabber.org/protocol/muc"/>
 </query>
</iq>

Bingo! Now that she found the MUC service, all she needs to do is ask for the list of rooms,

which is done using another disco#items request:

<iq type="get" id="muc-4" to="rooms.wonderland.lit">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

This request results in the list of all the MUC rooms on the rooms.wonderland.lit server (in this

case, a tea party and a room for discussing croquet):

<iq type="result" id="muc-4"
 from="rooms.wonderland.lit" to="alice@wonderland.lit/RabbitHole">
 <query xmlns="http://jabber.org/protocol/disco#items">
 <item jid="teaparty@rooms.wonderland.lit"/>
 <item jid="croquet@rooms.wonderland.lit"/>
 </query>
</iq>

As you can tell from this scenario, a lot of stanzas are going back and forth. Things become

even more complex if you take into consideration that every step can result in an error response

from the responding entity. Testing this protocol therefore involves multiple tests, for

determining whether our client can handle every type of response from the server, both

successful and unsuccessful. Luckily, because of the high level at which we test our protocols,

creating a test for one scenario can be very compact and straightforward. For example, a test

for the “happy,” error-less scenario described earlier is shown in Example 7-7.

EXAMPLE 7-7. Testing RoomDiscoverer

void RoomDiscovererTest::testDiscoverRooms() {
 // Set up the responses
 itemsResponses["wonderland.lit"] =
 DiscoItems("pubsub.wonderland.lit", "rooms.wonderland.lit");
 infoResponses["pubsub.wonderland.lit"] =
 DiscoInfo("http://jabber.org/protocol/pubsub");
 itemsResponses["pubsub.wonderland.lit"] =
 DiscoItems("blogs@pubsub.wonderland.lit", "croquet@pubsub.wonderland.lit");
 infoResponses["rooms.wonderland.lit"] =
 DiscoInfo("http://jabber.org/protocol/muc");
 itemsResponses["rooms.wonderland.lit"] =
 DiscoItems("teaparty@rooms.wonderland.lit", "croquet@rooms.wonderland.lit");

 // Set up room discoverer
 RoomDiscoverer discoverer(channel);

B E A U T I F U L X M P P T E S T I N G 95

 // Execute room discovery
 discoverer.discoverRooms();

 // Test results
 ASSERT(discoverer.isFinished());
 StringList rooms = discoverer.getDiscoveredRooms();
 ASSERT_EQUAL(2, rooms.size());
 ASSERT(rooms.contains("teaparty@rooms.wonderland.lit"));
 ASSERT(rooms.contains("croquet@rooms.wonderland.lit"));
}

Specify the response to a disco#items request for the top-level wonderland.lit domain. In this

case, two items are returned: pubsub and rooms.

Specify the response to a disco#info request for the pubsub service. In this case, respond with

the namespace of the PubSub protocol.

Specify the items belonging to the pubsub service. These are added to test whether

RoomDiscoverer doesn’t pick up items from non-MUC services.

Respond that the rooms service supports MUC.

Specify the list of items (i.e., rooms) of the MUC service.

The test specifies what responses should be sent for both disco#info and disco#items queries

directed to specific JIDs. The RoomDiscoverer (which is the class that is responsible for discovering

rooms) is then put in action, after which the test checks whether it indeed discovered both

MUC rooms (and didn’t accidentally include the PubSub service items). Not only is the test

simple, but the auxiliary methods used by this test (including the fixture setup and tear down)

can be kept very simple as well, as can be seen in Example 7-8.

EXAMPLE 7-8. Setting up the RoomDiscovererTest fixture

void RoomDiscovererTest::setUp() {
 channel = new MockIQChannel();
 channel->onSendIQ.connect(bind(&RoomDiscovererTest::respondToIQ, this, _1));
}

void RoomDiscovererTest::tearDown() {
 delete channel;
}

void RoomDiscovererTest::respondToIQ(const IQ& iq) {
 ASSERT(iq.getType() == IQ::Get);
 if (iq.getPayload<DiscoItems>()) {
 ItemsResponseMap::const_iterator response = itemsResponses.find(iq.getTo());
 ASSERT(response != itemsResponses.end());
 channel->onIQReceived(iq.createResponse(new DiscoItems(response->second)));
 }
 else if (iq.getPayload<DiscoInfo>()) {
 InfoResponseMap::const_iterator response = infoResponses.find(iq.getTo());
 ASSERT(response != infoResponses.end());
 channel->onIQReceived(iq.createResponse(new DiscoInfo(response->second)));

96 C H A P T E R S E V E N

 }
 else {
 FAIL("Unexpected IQ");
 }
}

Whenever an IQ is sent, pass it to respondToIQ, which will respond to it.

In this section, I showed how you can apply the high level of testing described in the previous

section on more complex multistage protocols. Because the tests aren’t cluttered by low-level

protocol representational details, the tests can focus on testing the actual logic of the protocol,

allowing the number of tests to grow without compromising the beauty of the protocol test

suite.

Testing Session Initialization
By looking at both the single- and multistage request/response protocols from the previous

sections, we covered most of the XMPP protocols out there. Although the level of testing for

these protocols was already rather high, some protocols are still so complex that even testing

at the level of “abstract” payloads results in too much clutter for a beautiful test. These are

typically protocols that have a complex state diagram, and possibly even require user input

during the process. We therefore bring in a higher level of testing: scenario testing.

One of the most complex protocols in XMPP is session initialization. Session initialization in an

IM client involves creating a connection to the server; negotiating parameters of the connection

(e.g., using stream compression for lower bandwidth consumption, encrypting the stream for

better security, and so on); and finally authenticating with the server (typically involving

sending a username and password to the server). Which parameters to negotiate with the

server depends on what features the client and the server support, and also on the user

preferences of the client. For example, a server might not support stream encryption;

depending on whether the user has stated that he only wants to communicate over an

encrypted connection, the client should either report an error or fall back on an unencrypted

connection, respectively.

Testing all the possible code paths in session initialization requires a concise way of describing

a session initialization scenario. Example 7-9 shows such a scenario test where the client

encrypts the connection. By introducing helper methods describing what the client is supposed

to send and what the server would send in response, we can clearly see how the encryption

scenario is supposed to happen. It is easy to create scenarios for error conditions such as the

server not supporting encryption (as shown in Example 7-10), and even to test the client’s

reaction to failing network connections (shown in Example 7-11). Moreover, creating these

helper methods doesn’t require all that much code, as they involve only setting expectations

and responses on payloads, which can be written at the same level as the sections before.

B E A U T I F U L X M P P T E S T I N G 97

EXAMPLE 7-9. Testing session encryption negotiation

void SessionTest::testStart_Encrypt() {
 Session* session = createSession("alice@wonderland.lit/RabbitHole");
 session->setEncryptConnection(Session::EncryptWhenAvailable);
 session->start();

 sessionOpensConnection();
 serverAcceptsConnection();
 sessionSendsStreamStart();
 serverSendsStreamStart();
 serverSendsStreamFeaturesWithStartTLS();
 sessionSendsStartTLS();
 serverSendsTLSProceed();

 ASSERT(session->isNegotiatingTLS());

 completeTLSHandshake();
 sessionSendsStreamStart(); /* (*) Immediately after the handshake, the
 stream is reset, and the stream header is resent in an encrypted form. */
 serverSendsStreamStart();

 ASSERT(session->isConnected());
 ASSERT(session->isEncrypted());
}

Before sending XML elements over the stream, the client initializes the stream by sending

an opening <stream> tag. All subsequent elements are children of this element. When the

connection is closed, the closing </stream> tag is sent.

Similar to the client, the server also starts the stream by sending a <stream> tag.

Immediately after sending the opening stream tag, the server sends a list of all the features

it supports. In this case, it announces support for stream encryption using StartTLS.

The client sends a <starttls/> element to request the server to encrypt the connection.

The server responds with a <proceed/>, indicating that the TLS negotiation (or handshake)

can start.

Fake a successful TLS handshake.

EXAMPLE 7-10. Testing session failure due to the server not supporting encryption

void SessionTest::testStart_ForceEncyptWithoutServerSupport() {
 Session* session = createSession("alice@wonderland.lit/RabbitHole");
 session->setEncryptConnection(Session::AlwaysEncrypt);
 session->start();

 sessionOpensConnection();
 serverAcceptsConnection();
 sessionSendsStreamStart();
 serverSendsStreamStart();
 serverSendsStreamFeaturesWithoutStartTLS();

98 C H A P T E R S E V E N

 ASSERT(session->hasError());
}

EXAMPLE 7-11. Testing session failure due to a failing connection

void SessionTest::testStart_FailingConnection() {
 Session* session = createSession("alice@wonderland.lit/RabbitHole");
 session->start();

 sessionOpensConnection();
 serverAcceptsConnection();
 sessionSendsStreamStart();
 serverSendsStreamStart();
 closeConnection();

 ASSERT(session->hasError());
}

With scenario-based testing, it is possible to test the most complex class of protocols, covering

all their corner cases. Although many of the corner cases of each “stage” in such protocols can

be tested separately in isolation, scenarios are still needed to test the interaction between the

multiple stages of the protocol.

Automated Interoperability Testing
By using unit tests to test our protocols in isolation (without a real network connection to an

XMPP server), we were able to test all corner cases of a protocol while keeping our tests clean,

simple, fast, and reliable. However, an XMPP client doesn’t live in isolation; its purpose is to

eventually connect to a real XMPP server and talk to real clients. Testing an XMPP client in the

real world is important for several reasons. First of all, it allows you to check the functionality

of your application at a larger scale than the local unit testing, ensuring that all the components

work together correctly. Second, by communicating with other XMPP protocol

implementations, you can test whether your interpretation of the protocol specification is

correct. Finally, by testing your client against many different XMPP implementations, you are

able to ensure interoperability with a wide collection of XMPP software. Unless you are

developing a dedicated client to connect to only one specific server, testing interoperability

with other clients and servers is very important in an open, heterogeneous network such as

XMPP.

Because IM clients are driven by a user interface, testing interoperability between two clients

is typically done manually: both clients are started, they connect to a server, an operation is

triggered through the user interface of one client, and the other client is checked to determine

whether it responds correctly to the operation. Fully automating UI-driven features is very

hard.

Testing client-to-server interoperability is somewhat easier than testing client-to-client

communication. By creating a small headless test program on top of the client’s XMPP protocol

B E A U T I F U L X M P P T E S T I N G 99

implementation, we can test whether the basic XMPP functionality of the backend works

correctly, and even test complex protocols such as session initialization in action. For example,

consider the test program in Example 7-12. This program logs into the server, fetches the user’s

contact list (also called the roster), and returns successfully if it received the roster from the

server. By running this program, we can test whether most parts of our XMPP client’s backend

work: network connection, session initialization, stream compression, stream encryption,

sending IQ requests, notifications of IQ responses, and so on.

EXAMPLE 7-12. A test program to connect to a server and request the roster; the JID and password of the account are passed

through the environment

XMPPClient* xmppClient = NULL;
bool rosterReceived = false;

int main(int argc, char* argv[]) {
 xmppClient = new XMPPClient(getenv("TEST_JID"), getenv("TEST_PASS"));
 xmppClient->onConnected.connect(&handleConnected);
 xmppClient->connect();
 return rosterReceived;
}

void handleConnected() {
 GetRosterRequest* rosterRequest = new GetRosterRequest(xmppClient);
 rosterRequest->onResponse.connect(bind(&handleRosterResponse, _1, _2));
 rosterRequest->send();
}

void handleRosterResponse(RosterPayload*, optional<Error> error) {
 rosterReceived = !error;
 xmppClient->disconnect();
}

When connected (and authenticated), call handleConnected.

When a response for the roster request is received, call handleRosterReceived with the

response and status as arguments.

If there was no error, we received the roster properly.

A program similar to the one from Example 7-12 is run as part of Swift’s automated test suite.

We use a few different server implementations on every test run, passing the test JID and

password of each server through the environment. If ClientTest fails due to a bug in a protocol

implementation, a new unit test is added and the protocol is fixed. If the bug is due to a certain

combination of protocols not being handled properly (either by the client or by the server), a

scenario test is added to reproduce the scenario, after which either the client bug is fixed or

the client is adapted to work around a specific server implementation bug.

When using automated tests like the one just described, a project is of course always limited

to testing against the implementations it has access to. Although it is always possible to test

against the handful of free XMPP server implementations out there, testing against

100 C H A P T E R S E V E N

implementations from commercial vendors isn’t always straightforward. To make it easier for

the XMPP community to test their implementations against each other, there has been an

initiative to create a centralized place that provides access to test accounts on all server

implementations out there, including ones from commercial vendors.† This initiative paves the

way to easy, automated interoperability testing for XMPP projects.

Diamond in the Rough: Testing XML Validity
When testing the functionality of our protocol in the previous sections, we separated the stanza

representation from the actual logic of the protocol to improve the focus of our tests. This split

made testing the logic of the protocol straightforward and clean. Unfortunately, testing the

representational part that converts the abstract stanzas into XML and back is still tedious and

error-prone. One of the things that needs to be checked is whether every variation of the

payload transforms correctly to a standards-compliant XML element. For example, for the

version payload we used earlier, we need to test the representation of a payload with and

without a version number. Conversely, the transformation from XML to a payload data

structure needs to be tested for every possible compliant XML element. It would be handy if

we could automatically check whether our XML parser and serializer handles all of the possible

variations of payloads and stanzas allowed by the protocol standard.

A possible approach for testing XML parsers and serializers is automated XML validation. Every

protocol specification published by the XMPP Standards Foundation comes with an XML

schema. This schema describes the syntax and constraints of the XML used in the protocol. For

example, it specifies the names of the XML elements that can occur in the payload, the names

and types of the attributes of these elements, the number of times an element can occur, and

so on. Such XML schemas are typically used to test whether a piece of XML is syntactically

valid according to the rules specified in the schema. Unfortunately, the XMPP schemas

currently serve only a descriptive purpose, and are only used to document the protocol. This

is why using the XMPP schemas in automated processes, such as validity checking, is still mostly

unexplored terrain. However, there has been interest lately in making normative XML

schemas, which would open up some more possibilities for making the tedious testing of XMPP

parsing and serialization more pleasant and, who knows, even beautiful!

Conclusions
In our quest to create beautiful tests for checking XMPP protocol implementations, we started

out by testing simple request-response protocols at the lowest level: the data sent over the

network stream. After discovering that this form of testing does not really scale well, we

abstracted out the protocol to a higher level, up to the point where the tests used only

† Unfortunately, this initiative has currently been put on hold for more urgent matters, but it will hopefully
be revived soon.

B E A U T I F U L X M P P T E S T I N G 101

http://interop.xmpp.org

high-level data structures. By testing protocol behavior on a high level, we were able to write

tests for more complex protocols without compromising the clarity of the tests. For the most

complex protocols, writing scenarios helped to cover all of the possible situations that can arise

in a protocol session. Finally, since XMPP is an open protocol with many different

implementations, it’s very important to test an XMPP application on the real network, to ensure

interoperability with other implementations. By running small test programs regularly, we

were able to test the system in its entirety, and check whether our implementation of the

protocol plays together nicely with other entities on the network.

The focus of this chapter has mostly been on testing the protocol functionality in XMPP

implementations, as this is probably the most important part of quality control in XMPP.

However, many other forms of testing exist in the XMPP world besides protocol tests. For

example, performance testing is very crucial in the world of XMPP servers. Simple test scripts

or programs like the ones described earlier can be used to generate a high load on the server,

to test whether the server can handle increasing amounts of traffic. In XMPP clients, on the

other hand, testing the user interface’s functionality is very important. Although automated

UI testing is known to be hard, many complex parts, such as contact list representation, can

be unit tested in isolation, which can avoid bugs in vital pieces of client code.

Although it’s already possible to write simple, clean, and thorough tests for many aspects of

XMPP, there’s still a lot of beauty in testing waiting to be discovered. If you have suggestions

or ideas, or want to help work on improving testing in the XMPP community, feel free to stop

by http://xmpp.org and join the conversation!

References
[XML-C14n] Boyer, John. 2001. Canonical XML.

[DOM] Le Hégaret, Philippe. 2002. The W3C Document Object Model (DOM).

[RFC 3920] Saint-Andre, Peter. 2004. Extensible Messaging and Presence Protocol: Core.

[RFC 3921] Saint-Andre, Peter. 2004. Extensible Messaging and Presence Protocol: Instant Messaging

and Presence.

[XEP-0092] Saint-Andre, Peter. XEP-0092: Software Version.

[XMPP TDG] Saint-Andre, Peter. Smith, Kevin. Tronçon, Remko. 2009. XMPP: The Definitive

Guide. Cambridge: O’Reilly.

102 C H A P T E R S E V E N

http://xmpp.org
http://www.w3.org/TR/xml-C14n.html
http://www.w3.org/2002/07/26-dom-article.html
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3921.txt
http://www.ietf.org/rfc/rfc3921.txt
http://www.xmpp.org/extensions/xep-0092.html
http://oreilly.com/catalog/9780596157197/
http://oreilly.com/catalog/9780596157197/

A P P E N D I X

Contributors

JENNITTA ANDREA has been a multifaceted, hands-on practitioner (analyst, tester, developer,

manager), and coach on over a dozen different types of agile projects since 2000. Naturally a

keen observer of teams and processes, Jennitta has published many experience-based papers

for conferences and software journals, and delivers practical, simulation-based tutorials and

in-house training covering agile requirements, process adaptation, automated examples, and

project retrospectives. Jennitta’s ongoing work has culminated in international recognition as

a thought leader in the area of agile requirements and automated examples. She is very active

in the agile community, serving a third term on the Agile Alliance Board of Directors, director

of the Agile Alliance Functional Test Tool Program to advance the state of the art of automated

functional test tools, member of the Advisory Board of IEEE Software, and member of many

conference committees. Jennitta founded The Andrea Group in 2007 where she remains

actively engaged on agile projects as a hands-on practitioner and coach, and continues to bridge

theory and practice in her writing and teaching.

SCOTT BARBER is the chief technologist of PerfTestPlus, executive director of the Association

for Software Testing, cofounder of the Workshop on Performance and Reliability, and coauthor

of Performance Testing Guidance for Web Applications (Microsoft Press). He is widely recognized as

a thought leader in software performance testing and is an international keynote speaker. A

trainer of software testers, Mr. Barber is an AST-certified On-Line Lead Instructor who has

authored over 100 educational articles on software testing. He is a member of ACM, IEEE,

American Mensa, and the Context-Driven School of Software Testing, and is a signatory to the

Manifesto for Agile Software Development. See http://www.perftestplus.com/ScottBarber for more

information.

317

http://www.perftestplus.com/ScottBarber

REX BLACK, who has a quarter-century of software and systems engineering experience, is

president of RBCS, a leader in software, hardware, and systems testing. For over 15 years,

RBCS has delivered services in consulting, outsourcing, and training for software and hardware

testing. Employing the industry’s most experienced and recognized consultants, RBCS

conducts product testing, builds and improves testing groups, and hires testing staff for

hundreds of clients worldwide. Ranging from Fortune 20 companies to startups, RBCS clients

save time and money through improved product development, decreased tech support calls,

improved corporate reputation, and more. As the leader of RBCS, Rex is the most prolific

author practicing in the field of software testing today. His popular first book, Managing the

Testing Process (Wiley), has sold over 35,000 copies around the world, including Japanese,

Chinese, and Indian releases, and is now in its third edition. His five other books on testing,

Advanced Software Testing: Volume I, Advanced Software Testing: Volume II (Rocky Nook), Critical

Testing Processes (Addison-Wesley Professional), Foundations of Software Testing (Cengage), and

Pragmatic Software Testing (Wiley), have also sold tens of thousands of copies, including Hebrew,

Indian, Chinese, Japanese, and Russian editions. He has written over 30 articles, presented

hundreds of papers, workshops, and seminars, and given about 50 keynotes and other speeches

at conferences and events around the world. Rex has also served as the president of the

International Software Testing Qualifications Board and of the American Software Testing

Qualifications Board.

EMILY CHEN is a software engineer working on OpenSolaris desktop. Now she is responsible

for the quality of Mozilla products such as Firefox and Thunderbird on OpenSolaris. She is

passionate about open source. She is a core contributor of the OpenSolaris community, and

she worked on the Google Summer of Code program as a mentor in 2006 and 2007. She

organized the first-ever GNOME.Asia Summit 2008 in Beijing and founded the Beijing GNOME

Users Group. She graduated from the Beijing Institute of Technology with a master’s degree

in computer science. In her spare time, she likes snowboarding, hiking, and swimming.

ADAM CHRISTIAN is a JavaScript developer doing test automation and AJAX UI development.

He is the cocreator of the Windmill Testing Framework, Mozmill, and various other open

source projects. He grew up in the northwest as an avid hiker, skier, and sailer and attended

Washington State University studying computer science and business. His personal blog is at

http://www.adamchristian.com. He is currently employed by Slide, Inc.

ISAAC CLERENCIA is a software developer at eBox Technologies. Since 2001 he has been

involved in several free software projects, including Debian and Battle for Wesnoth. He, along

with other partners, founded Warp Networks in 2004. Warp Networks is the open source–

oriented software company from which eBox Technologies was later spun off. Other interests

of his are artificial intelligence and natural language processing.

JOHN D. COOK is a very applied mathematician. After receiving a Ph.D. in from the University

of Texas, he taught mathematics at Vanderbilt University. He then left academia to work as a

software developer and consultant. He currently works as a research statistician at M. D.

Anderson Cancer Center. His career has been a blend of research, software development,

318 A P P E N D I X

http://www.rbcs-us.com
http://www.adamchristian.com

consulting, and management. His areas of application have ranged from the search for oil

deposits to the search for a cure for cancer. He lives in Houston with his wife and four

daughters. He writes a blog at http://www.johndcook.com/blog.

LISA CRISPIN is an agile testing coach and practitioner. She is the coauthor, with Janet Gregory,

of Agile Testing: A Practical Guide for Testers and Agile Teams (Addison-Wesley). She works as the

director of agile software development at Ultimate Software. Lisa specializes in showing testers

and agile teams how testers can add value and how to guide development with business-facing

tests. Her mission is to bring agile joy to the software testing world and testing joy to the agile

development world. Lisa joined her first agile team in 2000, having enjoyed many years

working as a programmer, analyst, tester, and QA director. From 2003 until 2009, she was a

tester on a Scrum/XP team at ePlan Services, Inc. She frequently leads tutorials and workshops

on agile testing at conferences in North America and Europe. Lisa regularly contributes articles

about agile testing to publications such as Better Software magazine, IEEE Software, and Methods

and Tools. Lisa also coauthored Testing Extreme Programming (Addison-Wesley) with Tip House.

For more about Lisa’s work, visit http://www.lisacrispin.com.

ADAM GOUCHER has been testing software professionally for over 10 years. In that time he has

worked with startups, large multinationals, and those in between, in both traditional and agile

testing environments. A believer in the communication of ideas big and small, he writes

frequently at http://adam.goucher.ca and teaches testing skills at a Toronto-area technical college.

In his off hours he can be found either playing or coaching box lacrosse—and then promptly

applying lessons learned to testing. He is also an active member of the Association for Software

Testing.

MATTHEW HEUSSER is a member of the technical staff (“QA lead”) at Socialtext and has spent

his adult life developing, testing, and managing software projects. In addition to Socialtext,

Matthew is a contributing editor for Software Test and Performance Magazine and an adjunct

instructor in the computer science department at Calvin College. He is the lead organizer of

both the Great Lakes Software Excellence Conference and the peer workshop on Technical

Debt. Matthew’s blog, Creative Chaos, is consistently ranked in the top-100 blogs for

developers and dev managers, and the top-10 for software test automation. Equally important,

Matthew is a whole person with a lifetime of experience. As a cadet, and later officer, in the

Civil Air Patrol, Matthew soloed in a Cessna 172 light aircraft before he had a driver’s license.

He currently resides in Allegan, Michigan with his family, and has even been known to coach

soccer.

KAREN N. JOHNSON is an independent software test consultant based in Chicago, Illinois. She

views software testing as an intellectual challenge and believes in context-driven testing. She

teaches and consults on a variety of topics in software testing and frequently speaks at software

testing conferences. She’s been published in Better Software and Software Test and Performance

magazines and on InformIT.com and StickyMinds.com. She is the cofounder of WREST, the

Workshop on Regulated Software Testing. Karen is also a hosted software testing expert on

Tech Target’s website. For more information about Karen, visit http://www.karennjohnson.com.

C O N T R I B U T O R S 319

http://www.johndcook.com/blog
http://www.lisacrispin.com
http://adam.goucher.ca
http://xndev.blogspot.com
http://www.context-driven-testing.com/
http://informit.com
http://stickyminds.com
http://www.wrestworkshop.com/Home.html
http://searchsoftwarequality.techtarget.com/expert/KnowledgebaseBio/0,289623,sid92_cid1093127,00.html
http://www.karennjohnson.com

KAMRAN KHAN contributes to a number of open source office projects, including AbiWord (a

word processor), Gnumeric (a spreadsheet program), libwpd and libwpg (WordPerfect

libraries), and libgoffice and libgsf (general office libraries). He has been testing office software

for more than five years, focusing particularly on bugs that affect reliability and stability.

TOMASZ KOJM is the original author of Clam AntiVirus, an open source antivirus solution.

ClamAV is freely available under the GNU General Public License, and as of 2009, has been

installed on more than two million computer systems, primarily email gateways. Together with

his team, Tomasz has been researching and deploying antivirus testing techniques since 2002

to make the software meet mission-critical requirements for reliability and availability.

MICHELLE LEVESQUE is the tech lead of Ads UI at Google, where she works to make useful,

beautiful ads on the search results page. She also writes and directs internal educational videos,

teaches Python classes, leads the readability team, helps coordinate the massive postering of

Google restroom stalls with weekly flyers that promote testing, and interviews potential chefs

and masseuses.

CHRIS MCMAHON is a dedicated agile tester and a dedicated telecommuter. He has amassed a

remarkable amount of professional experience in more than a decade of testing, from telecom

networks to social networking, from COBOL to Ruby. A three-time college dropout and former

professional musician, librarian, and waiter, Chris got his start as a software tester a little later

than most, but his unique and varied background gives his work a sense of maturity that few

others have. He lives in rural southwest Colorado, but contributes to a couple of magazines,

several mailing lists, and is even a character in a book about software testing.

MURALI NANDIGAMA is a quality consultant and has more than 15 years of experience in

various organizations, including TCS, Sun, Oracle, and Mozilla. Murali is a Certified Software

Quality Analyst, Six Sigma lead, and senior member of IEEE. He has been awarded with

multiple software patents in advanced software testing methodologies and has published in

international journals and presented at many conferences. Murali holds a doctorate from the

University of Hyderabad, India.

BRIAN NITZ has been a software engineer since 1988. He has spent time working on all aspects

of the software life cycle, from design and development to QA and support. His

accomplishments include development of a dataflow-based visual compiler, support of

radiology workstations, QA, performance, and service productivity tools, and the successful

deployment of over 7,000 Linux desktops at a large bank. He lives in Ireland with his wife and

two kids where he enjoys travel, sailing, and photography.

NEAL NORWITZ is a software developer at Google and a Python committer. He has been

involved with most aspects of testing within Google and Python, including leading the Testing

Grouplet at Google and setting up and maintaining much of the Python testing infrastructure.

He got deeply involved with testing when he learned how much his code sucked.

ALAN PAGE began his career as a tester in 1993. He joined Microsoft in 1995, and is currently

the director of test excellence, where he oversees the technical training program for testers and

320 A P P E N D I X

various other activities focused on improving testers, testing, and test tools. Alan writes about

testing on his blog, and is the lead author on How We Test Software at Microsoft (Microsoft Press).

You can contact him at alan.page@microsoft.com.

TIM RILEY is the director of quality assurance at Mozilla. He has tested software for 18 years,

including everything from spacecraft simulators, ground control systems, high-security

operating systems, language platforms, application servers, hosted services, and open source

web applications. He has managed software testing teams in companies from startups to large

corporations, consisting of 3 to 120 people, in six countries. He has a software patent for a

testing execution framework that matches test suites to available test systems. He enjoys being

a breeder caretaker for Canine Companions for Independence, as well as live and studio sound

engineering.

MARTIN SCHRÖDER studied computer science at the University of Würzburg, Germany, from

which he also received his master’s degree in 2009. While studying, he started to volunteer in

the community-driven Mozilla Calendar Project in 2006. Since mid-2007, he has been

coordinating the QA volunteer team. His interests center on working in open source software

projects involving development, quality assurance, and community building.

DAVID SCHULER is a research assistant at the software engineering chair at Saarland University,

Germany. His research interests include mutation testing and dynamic program analysis,

focusing on techniques that characterize program runs to detect equivalent mutants. For that

purpose, he has developed the Javalanche mutation-testing framework, which allows efficient

mutation testing and assessing the impact of mutations.

CLINT TALBERT has been working as a software engineer for over 10 years, bouncing between

development and testing at established companies and startups. His accomplishments include

working on a peer-to-peer database replication engine, designing a rational way for

applications to get time zone data, and bringing people from all over the world to work on

testing projects. These days, he leads the Mozilla Test Development team concentrating on QA

for the Gecko platform, which is the substrate layer for Firefox and many other applications.

He is also an aspiring fiction writer. When not testing or writing, he loves to rock climb and

surf everywhere from Austin, Texas to Ocean Beach, California.

REMKO TRONÇON is a member of the XMPP Standards Foundation’s council, coauthor of

several XMPP protocol extensions, former lead developer of Psi, developer of the Swift Jabber/

XMPP project, and a coauthor of the book XMPP: The Definitive Guide (O’Reilly). He holds a

Ph.D. in engineering (computer science) from the Katholieke Universiteit Leuven. His blog can

be found at http://el-tramo.be.

LINDA WILKINSON is a QA manager with more than 25 years of software testing experience.

She has worked in the nonprofit, banking, insurance, telecom, retail, state and federal

government, travel, and aviation fields. Linda’s blog is available at http://practicalqa.com, and

she has been known to drop in at the forums on http://softwaretestingclub.com to talk to her

Cohorts in Crime (i.e., other testing professionals).

C O N T R I B U T O R S 321

http://blogs.msdn.com/alanpa
mailto:alan.page@microsoft.com
http://cci.org
http://oreilly.com/catalog/9780596157197/
http://el-tramo.be
http://practicalqa.com
http://softwaretestingclub.com

JEFFREY YASSKIN is a software developer at Google and a Python committer. He works on the

Unladen Swallow project, which is trying to dramatically improve Python’s performance by

compiling hot functions to machine code and taking advantage of the last 30 years of virtual

machine research. He got into testing when he noticed how much it reduced the knowledge

needed to make safe changes.

ANDREAS ZELLER is a professor of software engineering at Saarland University, Germany. His

research centers on programmer productivity—in particular, on finding and fixing problems

in code and development processes. He is best known for GNU DDD (Data Display Debugger),

a visual debugger for Linux and Unix; for Delta Debugging, a technique that automatically

isolates failure causes for computer programs; and for his work on mining the software

repositories of companies such as Microsoft, IBM, and SAP. His recent work focuses on

assessing and improving test suite quality, in particular mutation testing.

322 A P P E N D I X

C O L O P H O N

The cover image is from Getty Images. The cover fonts are Akzidenz Grotesk and Orator. The

text font is Adobe’s Meridien; the heading font is ITC Bailey.

	Table of Contents
	Preface
	How This Book Is Organized
	Part I, Beautiful Testers
	Part II, Beautiful Process
	Part III, Beautiful Tools

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 7
	Contributors
	Colophon

